
Number 72

1 Building Adaptable
Templates for Large
Projects
Phillip Kerman

6 Xtra Alert
Ken Durso

7 Dances with
FileMaker
Darrel Plant

12 Dreamweaver Tips
Hava Edelstein

h t t p : / / w w w . m u j . c o m

July 1998

h t t p : / / w w w . m u j . c o mh t t p : / / w w w . m u j . c o m

This icon indicates that accompanying files are
available online at http://www.muj.com.

Building Adaptable
Templates for Large Projects
Phillip Kerman

How do you make a template that saves the author’s time
while remaining fresh and unique-looking to the user? If you
use templates, every screen in your project can look unique—
without having to program each screen individually.
Templates can range from completely automatic (where the
author might not even need Director or Authorware to make
changes) to something resembling a “style guide,” where it
only helps the project look consistent. This article will discuss
the steps to designing a template that fits your project.

THE dream: Imagine you’ve finished the first section
of your project. The client delivers content for the
remaining five sections. You scan the toolbar in

Director for the “Finish Project” button … one click, and
your project is done! Don’t start looking for that button,
because it doesn’t exist. By designing a set of templates
for your project, however, you can automate the process
significantly.

The real world: The scenario I experienced during a
recent project was a little different—but it was similar in
that all the programming was finished months before the
content. Through a process of designing and building
templates, we ended up with a code file that allowed the
content developers to finish the project. They simply
followed a few rules, named cast files and castmembers
appropriately (see Figure 1), changed a few numbers in an
“ini” file (see Figure 2), and they could finish the project
without any help from me!

The conventions for this project were easily
communicated—but they did require that the content
developers have some Director knowledge. Why didn’t we
make templates that were so automatic that anyone could
modify them? We could have. This would have had a greater
value, but also a greater cost. This balance is only one of the
many considerations when designing a template.

Model or template?
Though it’s just a matter of semantics,
I’d like to define these two terms.
Models are the way the user experiences
content. Templates are the way the
author implements content. A model is
such a good example of an idea that
the same model can be used every time
you need to communicate that idea; for
instance, a “return on investment”
model—spend money now, get the
payback over time. Models in
multimedia can be a simple “slider”
(where anyone knows what to do) or a “multiple-choice”
model. We should capitalize on good models—use the
ones that work. This article is about templates and how
they can be designed to save the author’s time. Even
though the concentration will be on the author, it’s
important not to forget the user when developing
templates.

Types of templates
Templates can be categorized on two scales:

• How dynamic or hard-wired is it?
• How much technical knowledge is required to

implement the content?
Figure 3 plots these two considerations and shows

there are four basic combinations. Before we look at each
type, notice that the higher or further to the right, the
greater the effort and cost—but the value also increases.
Also notice that templates at the bottom extreme are
better described as “style guides,” and the top extreme are
“engines.” The templates at the left are “helpers,” whereas
to the right, you begin to actually recreate software
“applications.”

2 http://www.muj.comMacromedia User Journal July 1998

Macromedia User Journal (ISSN 1065-3929) is published monthly (12
times per year) by Pinnacle Publishing, Inc., 1503 Johnson Ferry
Road, Suite 100, Marietta, GA 30062.

POSTMASTER: Send address changes to Macromedia User Journal,
PO Box 72255, Marietta, GA 30007-2255.

Copyright © 1998 by Pinnacle Publishing, Inc. All rights reserved. No
part of this periodical may be used or reproduced in any fashion
whatsoever without the prior written consent of Pinnacle
Publishing, Inc. Printed in the United States of America.

Macromedia User Journal is a trademark of Pinnacle Publishing, Inc.
Macromedia, Macromedia Director, MediaMaker, Macromedia Three-
D, Lingo, Windows Player, and XObjects are trademarks of
Macromedia, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders. Macromedia, Inc.
is not responsible for the contents of this publication.

This publication is intended as a general guide. It covers a highly
technical and complex subject and should not be used for making
decisions concerning specific products or applications. This
publication is sold as is, without warranty of any kind, either express

or implied. Pinnacle Publishing, Inc., shall not be liable to the
purchaser or any other person or entity with respect to any liability,
loss, or damage caused or alleged to be caused directly or indirectly
by this publication. Articles published in Macromedia User Journal
reflect the views of their authors. Inclusion of advertising inserts
does not constitute an endorsement by Pinnacle Publishing, Inc. or
Macromedia User Journal.

Direct all editorial, advertising, or subscription-
related questions to Pinnacle Publishing, Inc.:

1-800-788-1900 or 770-565-1763
Fax: 770-565-8232

Pinnacle Publishing, Inc.
PO Box 72255

Marietta, GA 30007-2255

E-mail: muj@pinpub.com
Pinnacle Web Site: http://www.pinpub.com
Macromedia technical support: 415-252-9080

Subscription rates:
United States: One year (12 issues): $175; two years (24 issues): $250

Canada:* One year: $190; two years: $265
Other:* One year: $195; two years: $270

Single issue rate: $12*
European newsletter orders:

Tomalin Associates, Unit 22, The Bardfield Centre,
Braintree Road, Great Bardfield,

Essex CM7 4SL, United Kingdom.
Phone: +44 (0)1371 811299. Fax: +44 (0)1371 811283.

E-mail: 100126.1003@compuserve.com.

Australian newsletter orders:
Ashpoint Pty., Ltd., 9 Arthur Street,

Dover Heights, N.S.W. 2030, Australia.
Phone: +61 2-371-7399. Fax: +61 2-371-0180.

E-mail: sales@ashpoint.com.au
Internet: http://www.ashpoint.com.au

* Funds must be in U.S. currency.

Macromedia User Journal Subscription Information:
1-800-788-1900 or http://www.pinpub.com

It should be noted that templates don’t always fall
neatly into these four categories, but for the purpose of
discussion, we can break them down into the following
four types:

1. Style guide for author
2. Engine for author
3. Runtime style guide
4. Runtime engine

Type 1: Style guide for author
The least sophisticated type of template is both hard-
wired and requires the author to make modifications. It’s
really nothing more than a style guide that an author
copies and pastes, then customizes to the content. I
consider this a template because it ensures a consistent
look to your project.

This type of template can take any form with which

authors are comfortable. It usually involves a “master”
starter file—maybe locked on a server, or saved as an
Authorware model (don’t get confused by the word
“model”; these are “templates” according to my
definition).

Since it’s duplicated in every instance, the
disadvantages are significant.

• It’s not easy to make global changes late in
production. Each instance is hard-wired and would
therefore require re-modification.

• File size is large. When an Authorware file has lots of
icons or a Director file has lots of members and frames,
performance diminishes—not to mention the
increased chance of corruption and lack of
modularity.
Although these disadvantages are significant, it

should be mentioned that one advantage of such a

Figure 1. (Above) Production
people simply followed a naming
convention for the castmembers.

Figure 2. (Right) This text “ini file”
contained all the details for each
page in the project—and could
be edited from outside the
source Director file.

Figure 3. The four types of templates are categorized by two
scales—how dynamic the template is and who modifies the
template.

Technical Editors Ken Durso and Darrel Plant;
Founding Editors Tony Bovè and Cheryl Rhodes;

Publisher Robert Williford;
Vice President/General Manager Connie Austin;

Managing Editor Heidi Frost; Copy Editor Farion Grove

http://www.muj.com 3Macromedia User Journal July 1998

template is that it’s better than nothing. Also, it requires
very little upfront investment—so this would be
appropriate for a small job. Finally, the same look and feel
can be imposed throughout a job (even if several authors
are working on the project).

Tips for Authorware
• Use embedded text. Expressions inside the curly “{ }”

brackets will alleviate the authors from editing
display icons (and possibly moving them). Be careful
to plan where the text fields word-wrap.

• Lock the displays. Set Modify/Icon/Calculation to
read “Movable:=FALSE” so the authors can’t move
the display during testing. Select Modify/Icon/
Properties Layout tab and set Positioning to On
Screen so if the authors move a display (by accident),
it re-displays in the correct location.

Tips for Director
• Create all graphics at full screen and trim the

excess. This technique will allow all graphics to be
“centered”—when dragged to the score (not the
stage). Be aware when you import graphics that
Director “shrinks” down to the non-white borders
of your image, so be sure to have something that’s
off white in the corners (you could put registration
dots in the corners).

Example
The example I’ve chosen was a simple multiple-choice

The authors simply defined the “AnswerString” in a
calculation icon (see Figure 5). One feature we added
was to have the text dim out after the user chose the
wrong answer—notice that in Figure 6, “Portland” is
dimmed out. There were two separate display icons (one
black, one gray), but the authors didn’t need to type the
text twice, of course. However, this demonstrates why
you should be mindful of how text word-wraps,
because if the dimmed version of “Portland” word-
wrapped, it wouldn’t cover the original text properly.

Type 2: Engine for author
The next level of sophistication is to make “helpers” for
the author. In the previous type of template, there was a
lot of copying and pasting going on … this should set off
alarms in efficiency-conscious authors. It’s better to build
an engine, something so dynamic that it can create
multiple instances of itself, or automatically make copies.
As this template is supposed to help the author, let’s think
of what kinds of things would help the author. The two
potentially problematic issues that immediately come to
mind are placement of graphics on-screen and typing data
(and possibly typos) into our project. We can automate
both of these.

This “engine for the author” needn’t be so solid
that no one can break it; rather, there can be a set of
rules that each author must follow (and these rules can
require knowledge of the authoring tool). This template
can do its work at runtime, but it can also just be an
author-time “helper” (for example, if reading in data,
processing it, and then displaying it is too time-
consuming for the user to endure). Our template, in
this case, could generate “hard-wired” scripts
automatically that would relieve the author as well as
eliminate the potential for typos.

This type of template is valuable because it automates
much of the author’s work. Although there’s a fair
amount of development upfront, it’s still less than it
would be if you were creating a template so durable
anyone could implement it. One disadvantage, though, is
that the code is “locked down” after production—you
have to re-open the source files to make any changes to
the way the template functions.

Figure 4. On-screen text is based on the
value of the variable “answerString”.

Figure 5. Everything on-screen is defined in calculation icons, not display icons.

Figure 6. Text on-screen that the author
never actually touched.

template where
we used
embedded text
so the authors
couldn’t move
the text. Notice
that in Figure 4,
the on-screen
text consists of
expressions that
“parse” the
value of
“AnswerString”.

4 http://www.muj.comMacromedia User Journal July 1998

Tips for Authorware
• Use expressions that reference “IconTitle”. Before

you put any graphics in a display, title the icon “any
name EDIT:2” and set the icon’s layout tab properties to
“On screen” or “In Area”. Then put an expression (not
an explicit number) in the “initial” field. The
expression can make reference to the icon’s title, like
“GetNumber(GetNumber(1,IconTitle),xLocList)”,
which, translated, means take the first number in our
icon’s title (“2,” in this case) and from our custom
variable “xLocList” (of all the x-coordinate locations)
take the second number you find. Use this display
icon for every graphic, and the author will only have
to position the image once! If you want the display to
position itself somewhere else, just edit the first
number in the icon’s title … or globally change the
value of “xLocList”.

Tips for Director
• Use “beginSprite” for initial settings of sprites. For

instance, to automatically center a graphic, use the
following:

on beginSprite me
 set the locH of sprite the spriteNum of me to _
 (.5 * (the stageRight-the stageLeft))
end

• Use slow author-time index building routines. But
for the runtime version, “lock down” your code after
the last save so it runs fast. For example, in a recent
project, we were plotting data from many life
insurance policies. Ideally, we could (at runtime) read
the data from text files and plot the values. However,
there was a lot of data, and each graph required
significant processing (such as scaling all the data
depending on the range of values). Instead, we wrote
a “processing script” to read in the data, process it,
and save it to field members (48 graphs took three
minutes to process!). At runtime, we simply dumped
the data from the fields into lists, and the graphing
was lightning fast.

Type 3: Runtime style guide
This template is simply an organized way for non-authors to
consistently implement content. There must be controls in
place to prevent simple mistakes from sabotaging a project—
either error checks that prevent the piece from running, or
proofing scripts that confirm everything is in place.

To make this template so anyone (with or without
authoring skills) can use it, we’ll want to keep all the
content (or data) external to the code file. This can mean
developing simple bitmapped images or “ini” files to
reside adjacent to your delivered application. Of course, if
you plan to use bitmapped images, the content people
must have the skill to edit or rename image files.

This design is quite valuable because changes to the
content can be made without the expert authors (or their
expert charges). Also, these templates are great for
projects that get localized to other cultures or languages
because the translators can implement the localized
content. You should recognize that although the content
people might not need authoring skills, they will need
whatever skills you require in your design (maybe editing
bitmaps, for instance). The point is, these skills are
probably easier to find than, say, Director expertise.

One disadvantage is that there’s a fair amount of up-
front design cost—and if the project doesn’t require it (or the
content people don’t take advantage of it), then the
investment is wasted. Also, more and more sophistication
usually adds an inordinate amount of work (these templates
are usually kept fairly simple to avoid extra work).

Tips for Authorware
• Using the “ReadExtFile” function is great, but it can be

a bit touchy if you use special characters as delimiters.
Everything will work fine if the content people follow
your rules—but one extra character in the wrong place
and your “ini” file could fall apart. I’d highly
recommend “baReadIni” from the “BuddyAPI Xtra”
(note that this is a third-party Xtra). This way, you can
require that the content people simply follow “rules of
ini files” or use an “ini” file editor.

• Remember that when using an externally linked
image (with a variable like “=curImage”), the display
icon will need to be updated after you change the
“curImage” variable. This is done in one of two ways:
Either set the display icon’s properties to “Update
Displayed Variables” (which negatively affects
performance slightly), or use a calculation icon with
the following two lines:

EraseIcon(IconID@"Display Icon")
DisplayIcon(IconID@"Display Icon")

Remember, though, that the display’s erasing
characteristic will now be based on wherever this
calculation icon is placed.

Tips for Director
• Using the FILEIO Xtra is fine (though maybe not the

easiest thing to use) … but the same warnings apply
as with Authorware’s “ReadExtFile” function. Use a
third-party Xtra and your life will be easier.

• If you have several members “Linked to External
Files,” but they don’t appear on stage at the same
time, consider using one member and setting “the
filename of member” as needed. This can
significantly improve performance because every one
of those external links will be established (and take
up memory) when your file opens.

http://www.muj.com 5Macromedia User Journal July 1998

Example
This involves a tutorial for the Intel Video Phone that
completed in less than one week. When we finished,
however, it was sent out to be translated into 17 languages.
Needless to say, we designed most of the screens without
text—less text, less translation, right? On the screens with
text, we linked to an external bitmap file. There were only a
few screens: “intro.bmp”, “exit.bmp”, and “help.bmp”. The
content people simply created full-screen (640x480) images
and placed them in the “BMPS” folder next to the projector
that we delivered. The same method was used for the few
audio files (see Figure 7). The only place something could go
wrong was in the image creation. The artists prevented those
problems by creating some FreeHand templates, but that’s
another story.

Type 4: Runtime engine
The idea here is to build a template that can accept a few
initial variables and transform itself to reflect the content
it’s accepting. For example, you could send a template
information about the size and location of a highlight box.
Then at runtime, the template could display the highlight
in the correct place—never requiring an author to
physically draw or position the graphic. A characteristic
of this template type is that only one instance of the code-
template exists in the final product—but there are many
instances of data (that is, the variables that are different
every time you use the template).

Tips for Authorware
• Hang your template off a framework icon with a Nearby

Exit Framework/Return navigation icon under the
template. Use a navigation Call and Return to get the
user to your template—just be sure to set the initial
variables before navigating.

• Put your template in a map icon that’s hanging off a
scope perpetual conditional response (Erase set to “Before
Next Entry” and Branch set to “Return”). The
conditional expression can reflect a variable that you
set when you want the user to jump to the template
(like “quizTime=1”).

Tips for Director
• Put your template in a movie in a window (MIAW). Use

“tell” to send variables between the MIAW and your
main movie (“the stage”).

• Keep the code in an external cast and lock or protect
that file. This is more to ensure consistency than to
prevent authors from “stealing” your code.

Designing a real-world template
These four types of templates represent the four extremes of
the dynamic/hard-wired and author/anyone-modifiable
scales. However, every template created doesn’t fall neatly
into one of these four types. Often, the templates you design
will have characteristics from several different types. When
you do create a template for your own production, there’s a
series of steps worth following.

You shouldn’t simply pick one of the four general
“types” of templates—that would be a case of fitting the
job to the tools. Besides, picking one doesn’t actually
help you design. The process really involves a hard look
at the content. We want a template that uses a proven
communication or learning model—but one that can be
used repeatedly without becoming stale or redundant.
On the one hand, you can rely on the users’ previous
knowledge (making it easier for them to learn), and on the
other hand, you run the risk of creating something that’s
boring to the user because it’s repetitive.

Sequence to designing a template
• Imagine the ultimate application, with each screen

unique. Like Stephen Covey’s The 7 Habits of Highly
Effective People, the first step to designing a template is
to “begin with the end in mind.”

• Categorize the content. How is it the same, and how
is it different?

• Define models, trying to incorporate as many
variations as you can within each model. Now,
design your models trying to incorporate as many of
the categories you’ve determined—don’t forget the
user, but try to streamline the content. It’s also
important not to make too many different models that
are really the same—for instance, you don’t need a
“multiple choice with three answers,” “multiple
choice with four answers,” and so on. Rather, try to
make a “multiple choice with X answers.” Also, you
can sometimes find similarities within a model’s
variations—like if you had a “multiple choice with
one right” and a “multiple choice with multiple
right,” there’s really only one type—the one with
multiple right. The one with just one right is really a
“multiple” of one. Try to combine these variations
within one “super model.”

• Create a few prototypes based on representative
content. Make what’s called a “full path review.”
Don’t finish every module, section, and page—rather,Figure 7. Storing externally linked files.

6 http://www.muj.comMacromedia User Journal July 1998

complete one module, one section, and a few pages.
Remember to pick representative content—take more
paths if that’s necessary to reach all the content.

• Analyze results and repeat as necessary. The idea is
to keep repeating the cycle until you’re close to the
ideal … you’ll never really get there, but the only way
to get closer is to complete the whole cycle (design,
build, analyze).

• Develop a vocabulary for all team members. This
can be arbitrary—it doesn’t matter if you call them
“sections” or “lessons,” but everyone should follow
the same convention.

• Build a table for content. This should be designed by
the people importing the content—but since it’s for
the people writing the content, the priority should be
on making it easy and clear for them.

• Add dummy content to a representative template.
• Write “proofing scripts” (especially important for

dynamic templates). Instead of quality assuring
every little bit of your project by hand (a time-
consuming process fraught with potential errors),
consider writing a script that will do the error checks
before delivery.

• Test at logical milestones to protect yourself from
heading too far down the wrong path. The “logical”
point might be hard to determine, but simply try to
prevent expensive rework.

Remembering why we’re here
Good templates pay for their own design cost in savings
later. The larger your project, the larger the savings.
Consider this investment when spending time building a
template—a template that’s worth more is worth
spending time on. Also, it’s easy to get hung up making
something totally for the benefit of the developer—that is,
yourself. As good developers, we must remember to
acknowledge our “leader”—the user. ▲

Phillip Kerman is an internationally recognized expert on creating

multimedia for training and entertainment. Specializing in Macromedia

tools for six years, Phillip has produced rapid prototypes, adaptable

templates for large projects, and software that enables easy localization.

Expanding on his work as a developer, Phillip currently teaches courses

and makes presentations around the world. Within the past 12 months,

he’s been invited to present and teach in Australia, Iceland, San Francisco,

and Toronto, as well as his hometown of Portland, OR. Feel free to contact

him at phillip@teleport.com or http://www.teleport.com/~phillip/.

