TITLE PAGE
Mention twitter tag:

I don't know if it'll work out so well…that's the twitter tag: adobemax147

I like the ring of that…
(press "1") "Psyched to learn me some AS3" @geekout
but that hash-tag…
Oh, and yeah, you can tweet during the session and we'll ALL distracted together.
No I'm not saying…. Don't tweet…
(press "2") "let the guy speak already" @TheBum
No--it's okay. But I want to say… you can't ask quest-cha --
(press "3") "can we ask questions here" @hotforAS3
No..uh, well. You know what? Why doesn't everybody open you laptop…go onto twitter

(press "z") ALT TAB Simulation
TWITTER PAGE
…and I'll just do the rest of the session like that?

No… no … the reason you can't ask questions is that… it's all fake--

"4" … I'm sorry… it's a burden I carry.

But… those tweets may pop up a few more times so I can have a dialog with myself.
"5" "I know mother!!!! I'm doing it now!!!"
OVERVIEW

These topics should probably sound familiar to most of you--but even though I'm everyone is at a different experience level--my goal in any case is to give you a better idea of what these things, what they can do, and how to use them. If these topics are totally new, you'll get a (hopefully) clear lucent description… and if you've familiar or even used them in some capacity I think I can still help solidify your understanding help you go to the next level.
REVIEW & PREREQUISITES
I am going to assume you know the idea of typing. Type variables, parameters, and return values. The way it looks is just that at the first use of the var, you add "colon plus whatever the type is". You're telling Flash that a variable will forever be whatever type you specify. It's nice that it also triggers code completion hints… but naming conventions (such as "my_btn") and there's nothing wrong with using a naming convention that tells you it's a button. But typing additionally makes your code perform better because Flash can designate a known portion of RAM to that var--plus use optimizations special to that datatype.
Any symbol can also point to a custom class file that you write.
And, it's sort of odd to think of the main timeline as the timeline of a MovieClip--but, it is… and you can associate the "document" with a class. (We'll look at classes but hopefully no one goes streaming out of the room at the sight of these dialogs)

"6" isn't that called linkage?"
Now they call it properties--but, yeah, associating a library item with a class is the same as what they used to call "setting linkage"

IMPORT STATEMENT
Maybe I'm making it harder by dwelling on it so much. I blame the name "import" for part of the problem because it sounds like something's getting added to your file..but no. Other languages call it "using" as in "using movie clip".
"7" I blame FLASH IDE"-- actually, it probably would be easier if they required it always (you'll see when we get to class files) it is required, so that's actually good.

Two things to know: understand there is no MovieClip class in Flash. Like Rizzo ratzo… Movie clip has a real name:
Flash.display.MovieClip

It's a nested folder metaphor but simply allows for classes to be contextualized by their full name… and even allows for two classes to have the same name. The second thing… when you want to refer to that class (and I know you don't want to use the full name every time…) so you say import flash.display.MovieCLp… which means… from now, when I say "MovieClip" you know I really mean flash.display.MovieClip
Great analogy is how you can just say "president" and --there's not conflict.. one's the US president… and one is the userGroup in san Francisco's president.

CONSTANTS vs. LITERALS
Constants are just a handy built-in way to ensure you spell things correctly. When you issue an addEventListener, the first thing you identify is the event name. Sure, you could type LITERALLY the string "click" but if you use MouseEvent.CLICK that's the same thing--because deep inside Flash, it sets MouseEvent.CLICK to "click". This way, however, if you make a typo, the compiler will freak if it sees you're referring to something that doesn't exist. Math.PI has a value of 3.14… MouseEvent.CLICK has the value 'click'. It seems more complicated than it is.

By the way, there are two kinds of error messages --and both should be cherished. Compiler errors are when you have an obvious syntax error such as referencing a variable you mistyped or sending one datatype to where another datatype is expected. Runtime exceptions only occur once your movie's running. Realize that while ideally you never encounter the problem to begin with (such as trying to load a file that isn't present)…but the real solution is to set up a listener for that defines how to handle the particular error.
CLASS: MINIMUM
Notice that there's the class--which is going to be accessed from outside the class (that is, inside Flash or from inside another class).
Balancing… package braces contain exactly one public class braces--and that class matches the file name. You can see there's a section where you put your imports (in the package but outside the class)… then everything inside the class are its member (which we'll see more of)

PACKAGES
Organize however you want--put your classes in folders. But notice the same hierarchy has to be specified after the word "package". See how the import is affected too.

Notice that you don't include the FULL path to that folder--just relative to where the .fla resides. That's because the default "classpath" is the same folder where the .fla resides. You can modify this in order to keep classes in a common folder. (Though, personally, I don’t want to "fix" something that an old project may have relied on.)
TYPICAL MEMBERS

Mention constructor that you get free.
EXTEND DISPLAY OBJECT

Once you have an instance of this class you can do anything you can do with the Sprite class… such as make an instance and do addChild().
"8" WTF is Sprite?
I could have said MovieClip--but movie clips are a more evolved form… they have multiple frames.

More about "extending"

CLASS FILES: linkage
That last example would be fine--but even though it was a sprite, you won't see anything unless you draw into (using addChild on the instance to add more instances of a different type… or by drawing into the graphics property--via the so called "drawing API").

However, Flash has a pretty decent drawing environment

"9" Ever hear of Ai or Ps?
My point is that you can draw into a symbol… then use the linkage to point to a class file. Then, that code will be THAT movie clip plus anything you add. (If you do use multiple frames you'll have to extend MovieClip--not Sprite)

PASSING PARAMS:

I didn't say much about the constructor except that it gets triggered automatically whenever you make an instance of your class. It's possible to accept or require a parameter. That means you don't just do "new MyClass()" but "new MyClass(param)". Keep in mind if it's a required parameter (that is, you don't define a default value to fall back on) then you won't be able to make an instance by just dragging the symbol on stage--you MUST use the new keyword because that's when you'll pass the value.
Without getting too freaked about this particular point--remember just that the constructor gets automatically triggered when you make an instance which makes it a nice place to put initialization code (or, if you want it to have a varied behavior, make it accept parameters).
PRACTICAL (just Scalable)
Note that the simple part is what you do in the .fla (or another class). That's where you should always start--design the class to support features to make it easy to use.

This class has just one public method meaning you can trigger it on an instance of this class.

PRACTICAL (extends Scalable)

Make your own little hierarchy… remember when you extend it means you get all the features of the thing you're extending plus whatever you're adding.

EXAMPLES
01_ Counter >> Google

02_ BetterClip + many BetterClips

PROPERTIES

All class properties are accessible within the class--but the public ones are also get-able and set-able from outside. Such public properties are

"a" I've heard you're not supposed to use public properties @stickler
Yes, later we'll see how to avoid them… but the attraction should be clear here. They let each instance maintain unique values for each property. Just like how each clip has its own value for x. Realize, though, when you change a homemade property you won't automatically see a change (like how changing x affects where they clip appears).
It also doesn't hurt to step back and remember what properties are: --static attributes.

METHODS

Are just functions--but compare methods to properties. Properties are just attributes that--at any one moment--have a specific value. Methods traditionally "do" things (like the methods play() or stop()). But, really it's up to you to put the code in the method that does the work. Since it has room for multiple lines of code, it's easier to "do" stuff (change the appearance for example). Properties you can set or get them--but nothing else.
EXAMPLE:
03_ Card

04_ setScale getScale

RISKS OF PUBLIC PROPERTIES
"b" but what if I WANT to set the scale to 10000?
EXPLICIT vs. IMPLICIT

"c" how do you make a property read-only?
…READ ONLY

Just don't give them a way to set,

PRACTICAL GETTER/SETTER
Really, the same deal--instead of setScale it's set-space-propname.

"d" "I'm shocked, you're using a literal string not a constant!"
EXAMPLE GETTER/SETTER

VALUE OBJECTS

Ends up being a class with a bunch of public properties (or protected properties via getter/setters). So, a "person" class could have properties for firstName, lastName, age. But you can also make helper functions the perform calculations. Say, "full name" by combining the firstName and lastName properties. Or, if you had a music "album" class, you could have a "duration" that was calculated by summing up the "duration" property of each song instance (in the albums "songList" array).

VALUE OBJECTS:
Person class

VALUE OBJECTS:

Album class

SONG CLASS:

--remind that it's all just value objects
ADVANCED ALBUM
"e" "You're going to over if you don't pick up the pace"
